Jump to content

Streaming Real-Time Data From Kafka 3.7.0 to Flink 1.18.1 for Processing

Recommended Posts

Over the past few years, Apache Kafka has emerged as the leading standard for streaming data. Fast-forward to the present day: Kafka has achieved ubiquity, being adopted by at least 80% of the Fortune 100. This widespread adoption is attributed to Kafka's architecture, which goes far beyond basic messaging. Kafka's architecture versatility makes it exceptionally suitable for streaming data at a vast "internet" scale, ensuring fault tolerance and data consistency crucial for supporting mission-critical applications. 

Flink is a high-throughput, unified batch and stream processing engine, renowned for its capability to handle continuous data streams at scale. It seamlessly integrates with Kafka and offers robust support for exactly-once semantics, ensuring each event is processed precisely once, even amidst system failures. Flink emerges as a natural choice as a stream processor for Kafka. While Apache Flink enjoys significant success and popularity as a tool for real-time data processing, accessing sufficient resources and current examples for learning Flink can be challenging. 


View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Create New...