Jump to content

Search the Community

Showing results for tags 'cve'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

There are no results to display.

There are no results to display.


Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


LinkedIn Profile URL


About Me


Cloud Platforms


Cloud Experience


Development Experience


Current Role


Skills


Certifications


Favourite Tools


Interests

Found 16 results

  1. Overview In an effort to safeguard our customers, we perform proactive vulnerability research with the goal of identifying zero-day vulnerabilities that are likely to impact the security of leading organizations. Recently, we decided to take a look at Ant Media Server with the goal of identifying any vulnerabilities within the application. We performed testing against […] The post Local Privilege Escalation Vulnerability in Ant Media Server (CVE-2024-32656) appeared first on Praetorian. The post Local Privilege Escalation Vulnerability in Ant Media Server (CVE-2024-32656) appeared first on Security Boulevard. View the full article
  2. Cloud technologies are a rapidly evolving landscape. Securing cloud applications is everyone’s responsibility, meaning application development teams are needed to follow strict security guidelines from the earliest development stages, and to make sure of continuous security scans throughout the whole application lifecycle. The rise of generative AI enables new innovative approaches for addressing longstanding challenges with reduced effort. This post showcases how engineering teams can automate efficient remediation of container CVEs (common vulnerabilities and exposures) early in their continuous integration (CI) pipeline. Using cloud services such as Amazon Bedrock, Amazon Inspector, AWS Lambda, and Amazon EventBridge you can architect an event-driven serverless solution for automatically addressing container vulnerabilities detection and patching. Using the power of generative AI and serverless technologies can help simplify what used to be a complex challenge. Overview The exponential growth of modern applications has enabled developers to build highly decoupled microservice-based architectures. However, the distributed nature of those architectures comes with a set of operational challenges. Engineering teams were always responsible for various security aspects of their application environments, such as network security, IAM permissions, TLS certificates, and code vulnerability scanning. Addressing these aspects at the scale of dozens and hundreds of microservices requires a high degree of automation. Automation is imperative for efficient scaling as well as maintaining control and governance. Running applications in containers is a common approach for building microservices. It allows developers to have the same CI pipeline for their applications, regardless of whether they use Amazon Elastic Kubernetes Service (Amazon EKS), Amazon Elastic Container Service (Amazon ECS), or AWS Lambda to run it. No matter which programming language you use for your application, the deployable artifact is a container image that commonly includes application code and its dependencies. It is imperative for application development teams to scan those images for vulnerabilities to make sure of their safety prior to deploying them to cloud environments. Amazon Elastic Container Registry (Amazon ECR) is an OCI artifactory that provides two types of scanning, Basic and Enhanced, powered by the Amazon Inspector. The image scanning occurs after the container image is pushed to the registry. The basic scanning is triggered automatically when a new image is pushed, while the enhanced scanning runs continuously for images hosted in Amazon ECR. Both types of scans generate scan reports, but it is still the development team’s responsibility to act on it: read the report, understand the vulnerabilities, patch code, open a pull request, merge, and run CI again. The following steps illustrate how you can build an automated solution that uses the power of generative AI and event-driven serverless architectures to automate this process. The following sample solution uses the “in-context learning” approach, a technique that tailors AI responses to narrow scenarios. Used for CVE patching, the solution builds AI prompts based on the programming language in question and a previously generated example of what a PR might look like. This approach underscores a crucial point: for some narrow use cases, using a smaller Large Language Model (LLM), such as Llama 13B, with assisted prompt might yield equally effective results as a bigger LLM, such as Llama 2 70B. We recommend that you evaluate both few-shot prompts with smaller LLMs and zero-shot prompts with larger LLMs to find the model that works most efficiently for you. Read more about providing prompts and examples in the Amazon Bedrock documentation. Solution architecture Prior to packaging the application as a container, engineering teams should make sure that their CI pipeline includes steps such as static code scanning with tools such as SonarQube or Amazon CodeGuru, and image analysis tools such as Trivy or Docker Scout. Validating your code for vulnerabilities at this stage aligns with the shift-left mentality, and engineers should be able to detect and address potential threats in their code in the earliest stages of development. After packaging the new application code and pushing it to Amazon ECR, the image scanning with Amazon Inspector is triggered. Engineers can use languages supported by Amazon Inspector. As image scanning runs, Amazon Inspector emits EventBridge Finding events for each vulnerability detected. CI is triggered by a developer pushing new code to the shared code repository. This step is not implemented in the provided sample, and different engineering teams can use different tools for their CI pipeline. The application container image is built and pushed to the Amazon ECR. Amazon Inspector is triggered automatically. Note that you must first enable Amazon Inspector ECR enhanced scanning in your account. As Amazon Inspector scans the image, it emits findings in a format of events to EventBridge. Each finding generates a separate event. See the example JSON payload of a finding event in the Inspector documentation. EventBridge is configured to invoke a Lambda function for each finding event. Lambda is invoked for each finding. The function aggregates and updates the Amazon DynamoDB database table with each finding information. Once Amazon Inspector completes the scan, it emits the scan complete event to EventBridge, which calls the PR creation microservice hosted as an Amazon ECS Fargate Task to start the PR generation process. PR creation microservice clones the code repo to see the current dependencies list. Then it retrieves the aggregated findings data from DynamoDB, builds a prompt using the dependencies list, findings data, and in-context learning example based on previous scans. The microservice invokes Amazon Bedrock to generate a new PR content. Once the PR content is generated, the microservice opens a new PR and pushes changes upstream. Engineering teams validate the PR and merge it with code repository. Overtime, as engineering teams gain trust with the process, they might consider automating the merge part as well. Sample implementation Use the example project to replicate this solution in your AWS account. Follow the instructions in README.md for provisioning and testing the sample project using Hashicorp Terraform. Under the /apps directory of the sample project you should see two applications. The /apps/my-awesome-application intentionally contains a set of vulnerable dependencies. This application was used to create examples of what a PR should look like. Once the engineering team took this application through Amazon Inspector and Amazon Bedrock manually, a file containing this example was generated. See in_context_examples.py. Although it can be a one-time manual process, engineering teams can also periodically add more examples as they evolve and improve the generative AI model response. The /apps/my-amazing-application is the actual application that the engineering team works on delivering business value. They deploy this application several times a day to multiple environments, and they want to make sure that it doesn’t have vulnerabilities. Based on the in-context example created previously, they’re continuously using Amazon Inspector to detect new vulnerabilities, as well as Amazon Bedrock to automatically generate pull requests that patch those vulnerabilities. The following example shows a pull request generated when a member of the development team has introduced vulnerable dependencies. The pull request contains details about the packages with detected vulnerabilities and CVEs, as well as recommendations for how to patch them. Moreover, the pull request already contains an updated version of the requirements.txt file with the changes in place. The only thing left for the engineering team to do is review and merge the pull request. Conclusion This post illustrates a simple solution to address container image (OCI) vulnerabilities using AWS Services such as Amazon Inspector, Amazon ECR, Amazon Bedrock, Amazon EventBridge, AWS Lambda, and Amazon Fargate. The serverless and event-driven nature of this solution helps make sure of cost efficiency and minimal operational overhead. Engineering teams do not need to run additional infrastructure to implement this solution. Using generative AI and serverless technologies helps simplify what used to be a complex and laborious process. Having an automated workflow in place allows engineering teams to focus on delivering business value, thereby improving overall security posture without extra operational overhead. Checkout step-by-step deployment instructions and sample code for the solution discussed in the post in this GitHub repository. References https://aws.amazon.com/blogs/aws/amazon-bedrock-now-provides-access-to-llama-2-chat-13b-model/ https://docs.aws.amazon.com/bedrock/latest/userguide/general-guidelines-for-bedrock-users.html https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-a-prompt.html#few-shot-prompting-vs-zero-shot-prompting View the full article
  3. Overview Recently, NSFOCUS CERT detected that Oracle has released a security announcement and fixed two information disclosure vulnerabilities (CVE-2024-21006/CVE-2024-21007) in Oracle WebLogic Server. Due to the defects of T3/IIOP protocol, unauthenticated attackers can send malicious requests through servers affected by T3/IIOP protocol. Access to sensitive information on the target system. Affected users should take measures […] The post WebLogic T3/IIOP Information Disclosure Vulnerability (CVE-2024-21006/CVE-2024-21007) appeared first on NSFOCUS, Inc., a global network and cyber security leader, protects enterprises and carriers from advanced cyber attacks.. The post WebLogic T3/IIOP Information Disclosure Vulnerability (CVE-2024-21006/CVE-2024-21007) appeared first on Security Boulevard. View the full article
  4. On Friday April 12, Palo Alto disclosed that some versions of PAN-OS are not only vulnerable to remote code execution, but that the vulnerability has been actively exploited to install backdoors on Palo Alto firewalls. A patch is expected to be available on April 14th. The advisory from Palo Alto is here. The CISA advisory [...] The post How to track and stop CVE-2024-3400: Palo Alto Devices API Exploit Causing Critical Infrastructure and Enterprise Epidemics appeared first on Wallarm. The post How to track and stop CVE-2024-3400: Palo Alto Devices API Exploit Causing Critical Infrastructure and Enterprise Epidemics appeared first on Security Boulevard. View the full article
  5. CVE-2024-3094 is a critical Remote Code Execution (RCE) vulnerability found in the popular open-source XZ Utils library. This vulnerability affects XZ Utils versions 5.6.0 and 5.6.1 and could enable unauthorized attackers to gain remote access to affected systems. About XZ Utils XZ Utils is very popular on Linux. It supports lossless data compression on almost […] The post CVE-2024-3094: RCE Vulnerability Discovered in XZ Utils appeared first on Kratikal Blogs. The post CVE-2024-3094: RCE Vulnerability Discovered in XZ Utils appeared first on Security Boulevard. View the full article
  6. Vulnerability Overview Recently, NSFOCUS CERT detected that the security community disclosed a supply chain backdoor vulnerability in XZ-Utils (CVE-2024-3094), with a CVSS score of 10. Since the underlying layer of SSH relies on liblzma, when certain conditions are met, an attacker can use this vulnerability to bypass SSH authentication and gain unauthorized access on the […] The post XZ-Utils Supply Chain Backdoor Vulnerability Updated Advisory (CVE-2024-3094) appeared first on NSFOCUS, Inc., a global network and cyber security leader, protects enterprises and carriers from advanced cyber attacks.. The post XZ-Utils Supply Chain Backdoor Vulnerability Updated Advisory (CVE-2024-3094) appeared first on Security Boulevard. View the full article
  7. The KernelCare team is working on deploying a live patch for CVE-2024-1086 for AlmaLinux 8 and AlmaLinux 9 users. As of April 3, the patches for CVE-2024-1086 are now available in production repos. Instructions for updating AlmaLinux 8 and AlmaLinux 9 can be found here. More details on the status of the live patch availability […] The post Update for KernelCare Live Patches for CVE-2024-1086 in AlmaLinux 8 & 9 appeared first on TuxCare. The post Update for KernelCare Live Patches for CVE-2024-1086 in AlmaLinux 8 & 9 appeared first on Security Boulevard. View the full article
  8. Hello fellow readers! Have you ever wondered how the GitHub Security Lab performs security research? In this post, you’ll learn how we leverage GitHub products and features such as code scanning, CodeQL, Codespaces, and private vulnerability reporting. By the time we conclude, you’ll have mastered the art of swiftly configuring a clean, temporary environment for the discovery, verification, and disclosure of vulnerabilities in open source software (OSS). As you explore the contents of this post, you’ll notice we cover a wide array of GitHub tooling. If you have any feedback or questions, we encourage you to engage with our community discussions. Rest assured, this post is designed to be accessible to readers regardless of their prior familiarity with the tools we’ve mentioned. So, let’s embark on this journey together! Finding an interesting target The concept of an “interesting” target might have different meanings for each one of you based on the objective of your research. In order to find an “interesting” target, and also for this to be fun, you have to write down some filters first—unless you really want to dive into anything! From the language the project is written in, through the surface it unveils (is it an app? a framework?), every aspect is important to have a clear objective. Using GitHub Code Search Many times, we need to search widely for the use of a specific method or library. Either to get inspiration to use it, or pwn it , GitHub code search is there for us. We can use this feature to search across all public GitHub repositories with language, path, and regular expression filters! For instance, see this search query to find uses of readObject in Java files. For example, usually one of these aspects is the amount of people using the project (that is, the ones affected if a vulnerability occurred), which is provided by GitHub’s dependency network (for example, pytorch/pytorch), but it does not end there: we are also interested in how often the project is updated, the amount of stars, recent contributors, etc. Fortunately for us, some very smart people over at the Open Source Security Foundation (OpenSSF) already did some heavy work on this topic. OpenSSF Criticality Score The OpenSSF created the Open Source Project Criticality Score, which “defines the influence and importance of a project. It is a number between 0 (least-critical) and 1 (most-critical).” For further information on the specifics of the scoring algorithm, they can be found on the ossf/criticality_score repository or this post. A few months after the launch, Google collected information for the top 100k GitHub repositories and shared it in this spreadsheet. Within the GitHub Security Lab, we are continuously analyzing OSS projects with the goal of keeping the software ecosystem safe, focusing on high-profile projects we all depend on and rely on. In order to find the former, we base our target lists on the OpenSSF criticality score. The beginning of the process We published our Code Review of Frigate in which we exploited a deserialization of user-controlled data using PyYaml’s default Loader. It’s a great project to use as the running example in this blog post, given its >1.6 million downloads of Frigate container at the time of writing and the ease of the setup process. The original issue We won’t be finding new vulnerabilities in this blog post. Instead, we will use the deserialization of user-controlled data issue we reported to illustrate this post. Looking at the spreadsheet above, Frigate is listed at ~16k with a 0.45024 score, which is not yet deemed critical (>0.8), but not bad for almost two years ago! If you are curious and want to learn a bit more about calculating criticality scores, go ahead and calculate Frigate’s current score with ossf/criticality_score. Forking the project Once we have identified our target, let’s fork the repository either via GitHub’s UI or CLI. gh repo fork blakeblackshear/frigate --default-branch-only Once forked, let’s go back to the state in which we performed the audit: (sha=9185753322cc594b99509e9234c60647e70fae6f) Using GitHub’s API update a reference: gh api -X PATCH /repos/username/frigate/git/refs/heads/dev -F sha=9185753322cc594b99509e9234c60647e70fae6f -F force=true Or using git: git clone https://github.com/username/frigate cd frigate git checkout 9185753322cc594b99509e9234c60647e70fae6f git push origin HEAD:dev --force Now we are ready to continue! Code scanning and CodeQL Code scanning is GitHub’s solution to find, triage, and prioritize fixes for existing problems in your code. Code scanning alerts in the Security tab, provided by CodeQL Pull request alerts When code scanning is “connected” with a static analysis tool like GitHub’s CodeQL, that’s when the magic happens, but we will get there in a moment. CodeQL is the static code analysis engine developed by GitHub to automate security checks. CodeQL performs semantic and dataflow analysis, “letting you query code as though it were data.” CodeQL’s learning curve at the start can be a little bit steep, but absolutely worth the effort, as its dataflow libraries allow for a solution to any kind of situation. Learning CodeQL If you are interested in learning more about the world of static analysis, with exercises and more, go ahead and follow @sylwia-budzynska’s CodeQL zero to hero series. You may also want to join GitHub Security Lab’s Slack instance to hang out with CodeQL engineers and the community. Creating the CodeQL workflow file GitHub engineers are doing a fantastic job on making CodeQL analysis available in a one-click fashion. However, to learn what’s going on behind the scenes (because we are researchers ), we are going to do the manual setup. Running CodeQL at scale In this case, we are using CodeQL on a per-repository basis. If you are interested in running CodeQL at scale to hunt zero day vulnerabilities and their variants across repositories, feel free to learn more about Multi-repository Variant Analysis. In fact, the Security Lab has done some work to run CodeQL on more than 1k repositories at once! In order to create the workflow file, follow these steps: Visit your fork For security and simplicity reasons, we are going to remove the existing GitHub Actions workflows so we do not run unwanted workflows. To do so, we are going to use github.dev (GitHub’s web-based editor). For such code changes, that don’t require reviews, rebuild, or testing, simply browse to /.github/workflows, press the . (dot) key once and a VS Code editor will pop-up in your browser. And push the changes: Enable GitHub Actions (optional) Head to the GitHub Actions tab and click on “I understand my workflows, go ahead and enable them.”Note that this might not appear if you deleted all workflows previously. Head to the Security tab Click on “Code Scanning” Click “Configure scanning tool” In CodeQL analysis, click “Set up” and then click “Advanced” Now, you are guided to GitHub’s UI file editor with a custom workflow file (whose source is located at actions/starter-workflows) for the CodeQL Action. You can notice it is fully customized for this repository by looking at the on.push.branches and strategy.matrix.language values. Actions documentation If you are not familiar with GitHub Actions, refer to the documentation to understand the basics of a workflow. At first glance, we can see that there’s an analyze job that will run for each language defined in the workflow. The analyze job will: Clone the repository Initialize CodeQL In this step, github/codeql-action/init will download the latest release of CodeQL, or CodeQL packs, that are not available locally. Autobuild The autobuild step will try to automatically build the code present in the workspace (step 1) in order to populate a database for later analysis. If it’s not a compiled language, it will just succeed and continue. Analyze The CodeQL binary will be called to finalize the CodeQL database and run queries on it, which may take a few minutes. Advanced configuration using Security Lab’s Community QL Packs With CodeQL’s default configuration (default workflow), you will already find impactful issues. Our CodeQL team makes sure that these default queries are designed to have a very low false positive rate so that developers can confidently add them to their CI/CD pipeline. However, if you are a security team like the GitHub Security Lab, you may prefer using a different set of audit models and queries that have a low false negative rate, or community-powered models customized for your specific target or methodology. With that in mind, we recently published our CodeQL Community Packs, and using it is as easy as a one-liner in your workflow file. As the README outlines, we just need to add a packs variable in the Initialize CodeQL step: - name: Initialize CodeQL uses: github/codeql-action/init@v2 with: languages: ${{ matrix.language }} packs: githubsecuritylab/codeql-${{ matrix.language }}-queries Once done, we are ready to save the file and browse the results! For more information on customizing the scan configuration, refer to the documentation. The bit I find most interesting is Using a custom configuration file. Browsing alerts A few minutes in, the results are shown in the Security tab; let’s dig in! Available filters for the repository alerts Anatomy of a code scanning alert While you may think that running CodeQL locally would be easier, code scanning provides additional built-in mechanisms to avoid duplicated alerts, prioritize, or dismiss them. Also, the amount of information given by a single alert page can save you a lot of time! Code scanning alert for deserialization of user-controlled data found by CodeQL In a few seconds, this view answers a few questions: what, where, when, and how. Even though we can see a few lines surrounding the sink, we need to see the whole flow to determine whether we want to pursue the exploitation further. For that, click Show paths. Code scanning alert for deserialization of user-controlled data found by CodeQL In this view, we can see that the flow of the vulnerability begins from a user-controllable node (in CodeQL-fu, RemoteFlowSource), which flows without sanitizers to a known PyYaml’s sink. Digging into the alert Looking at the alert page and the flow paths alone isn’t enough information to guess whether this will be exploitable. While new_config is clearly something we could control, we don’t know the specifics of the Loader that yaml.load is using. A custom Loader can inherit quite a few kinds of Loaders, so we need to make sure that the inherited Loader allows for custom constructors. def load_config_with_no_duplicates(raw_config) -> dict: """Get config ensuring duplicate keys are not allowed.""" class PreserveDuplicatesLoader(yaml.loader.Loader): pass ... return yaml.load(raw_config, PreserveDuplicatesLoader) However, we know CodeQL uses dataflow for its queries, so it should already have checked the Loader type, right? The community helps CodeQL get better When we were writing the post about Frigate’s audit, we came across a new alert for the vulnerability we had just helped fix! Our fix suggestion was to change the Loader from yaml.loader.Loader to yaml.loader.SafeLoader, but it turns out that although CodeQL was accounting for a few known safe loaders, it was not accounting for classes inheriting these. Due to this, code scanning didn’t close the alert we reported. The world of security is huge and evolving everyday. That is, supporting every source, sanitizer, and sink that exists for each one of the queries is impossible. Security requires collaboration between developers and security experts, and we encourage everyone who uses CodeQL to collaborate in any of the following forms to bring back to the community: Report the False Positives in github/codeql: CodeQL engineers and members of the community are actively monitoring these. When we came across the false positive explained before, we opened github/codeql#14685. Suggest new models for the Security Lab’s CodeQL Community Packs: Whether you’re inclined to contribute by crafting a pull request introducing novel models or queries or by opening an Issue to share your model or query concepts, you are already having a huge impact on the research community. Furthermore, the repository is also monitored by CodeQL engineers, so your suggestion might make it to the main repository impacting a huge amount of users and enterprises. Your engagement is more impactful than you might think. CodeQL model editor If you are interested in learning about supporting new dependencies with CodeQL, please see the CodeQL model editor. The model editor is designed to help you model external dependencies of your codebase that are not supported by the standard CodeQL Libraries. Now that we are sure about the exploitability of the issue, we can move on to the exploitation phase. GitHub Codespaces Codespaces is GitHub’s solution for cloud, instant and customizable development environments based on Visual Studio Code. In this post, we will be using Codespaces as our exploitation environment due to its safe (isolated) and ephemeral nature, as we are one click away from creating and deleting a codespace. Although this feature has its own billing, we will be using the free 120 core hours per month. Creating a codespace I wasn’t kidding when I said “we are one click away from creating and deleting a codespace”—simply go to “Code” and click “Create codespace on dev.” Fortunately for us, Frigate maintainers have helpfully developed a custom devcontainer configuration for seamless integration with VSCode (and so, Codespaces). Customizing devcontainer configuration For more information about .devcontainer customization, refer to the documentation. Once loaded, I suggest you close the current browser tab and instead connect to the Codespaces using VSCode along with the Remote Explorer extension. With that set up, we have a fully integrated environment with built-in port forwarding. Set up for debugging and exploitation When performing security research, having a full setup ready for debugging can be a game changer. In most cases, exploiting the vulnerability requires analyzing how the application processes and reacts to your interactions, which can be impossible without debugging. Debugging Right after creating the codespace we can see that it failed: Build error Given that there is an extensive devcontainer configuration, we can guess that it was not made for Codespaces, but for a local VSCode installation not meant to be used in the cloud. Clicking “View Creation Log” helps us find out that Docker is trying to find a non-existing device: ERROR: for frigate-devcontainer - Cannot start service devcontainer: error gathering device information while adding custom device "/dev/bus/usb": no such file or directory We need to head to the docker-compose.yml file (/workspaces/frigate/docker-compose.yml) and comment the following out: The devices property The deploy property The /dev/bus/usb volume Afterwards, we go to /workspaces/frigate/.devcontainer/post_create.sh and remove lines 5-9. After the change, we can successfully rebuild the container: Rebuilding the container Once rebuilt, we can see 6 ports in the port forwarding section. However, Frigate API, the one we are targeting through nginx, is not active. To solve that, we can start debugging by heading to the “Run and Debug” (left) panel and click the green (play-like) button to start debugging Frigate. Exploitation The built-in port forwarding feature allows us to use network-related software like Burp Suite or Caido right from our native host, so we can send the following request: POST /api/config/save HTTP/1.1 Host: 127.0.0.1:53128 Content-Length: 50 !!python/object/apply:os.popen - touch /tmp/pwned Using the debugging setup, we can analyze how new_config flows to yaml.load and creates the /tmp/pwned file. Now that we have a valid exploit to prove the vulnerability, we are ready to report it to the project. Private vulnerability reporting Reporting vulnerabilities in open source projects has never been an easy subject for many reasons: finding a private way of communicating with maintainers, getting their reply, and agreeing on so-many topics that a vulnerability covers is quite challenging on a text-based channel. That is what private vulnerability reporting (PVR) solves: a single, private, interactive place in which security researchers and maintainers work together to make their software more secure, and their dependent consumers more aware. Closing the loop Published advisories resulting from private vulnerability reports can be included in the GitHub Advisory Database to automatically disclose your report to end users using Dependabot! Note that GitHub has chosen to introduce this feature in an opt-in manner, aligning with our developer-first philosophy. This approach grants project maintainers the autonomy to decide whether they wish to participate in this reporting experience. That said, tell your favorite maintainers to enable PVR! You can find inspiration in the issues we open when we can’t find a secure and private way of reporting a vulnerability. Sending the report Once we validated the vulnerability and built a proof of concept (PoC), we can use private vulnerability reporting to privately communicate with Frigate maintainers. This feature allows for special values like affected products, custom CVSS severity, linking a CWE and assigning credits with defined roles, ensuring precise documentation and proper recognition, crucial for a collaborative and effective security community. Once reported, it allows for both ends (reporter and maintainer) to collaborate on a chat, and code together in a temporary private fork. On the maintainer side, they are one click away from requesting a CVE, which generally takes just two days to get created. For more information on PVR, refer to the documentation. Example of a published report GitHub and security research In today’s tech-driven environment, GitHub serves as a valuable resource for security researchers. With tools such as code scanning, Codespaces, and private vulnerability reporting seamlessly integrated into the platform, researchers can effectively identify and address vulnerabilities end to end. This comprehensive strategy not only makes research easier but also enhances the global cybersecurity community. By offering a secure, collaborative, and efficient platform to spot and tackle potential threats, GitHub empowers both seasoned security professionals and aspiring researchers. It’s the go-to destination for boosting security and keeping up with the constantly changing threat landscape. Happy coding and research! GitHub Security Lab’s mission is to inspire and enable the community to secure the open source software we all depend on. Learn more about their work.
  9. As sure as long weekends arrive in the western world, so too does news of new supply chain attacks. The easter bank holidays were no exception, with the discovery of a targeted attack against the popular XZ compression utility seen in many linux distributions such as fedora, debian to name a few. The post CVE-2024-3094 The targeted backdoor supply chain attack against XZ and libzma appeared first on Security Boulevard. View the full article
  10. Overview NSFOCUS CERT recently detected that a backdoor vulnerability in XZ Utils (CVE-2024-3094) was disclosed from the security community, with a CVSS score of 10. Because the SSH underlying layer relies on liblzma, an attacker could exploit this vulnerability to bypass SSH authentication and gain unauthorized access to affected systems, allowing arbitrary code execution. After […] The post XZ Utils Backdoor Vulnerability (CVE-2024-3094) Advisory appeared first on NSFOCUS, Inc., a global network and cyber security leader, protects enterprises and carriers from advanced cyber attacks.. The post XZ Utils Backdoor Vulnerability (CVE-2024-3094) Advisory appeared first on Security Boulevard. View the full article
  11. On March 29, 2024, Red Hat disclosed CVE-2024-3094, scoring a critical CVSS rating of 10. Stemming from a The post Bombshell in SSH servers! What CVE-2024-3094 means for Kubernetes users appeared first on ARMO. The post Bombshell in SSH servers! What CVE-2024-3094 means for Kubernetes users appeared first on Security Boulevard. View the full article
  12. The Mend.io research team detected more than 100 malicious packages targeting the most popular machine learning (ML) libraries from the PyPi registry. The post Critical Backdoor Found in XZ Utils (CVE-2024-3094) Enables SSH Compromise appeared first on Mend. The post Critical Backdoor Found in XZ Utils (CVE-2024-3094) Enables SSH Compromise appeared first on Security Boulevard. View the full article
  13. CVE-2024-3094 is a reported supply chain compromise of the xz libraries. The resulting interference with sshd authentication could enable an attacker to gain unauthorized access to the system. Overview Malicious code was identified within the xz upstream tarballs, beginning with version 5.6.0. This malicious code is introduced through a sophisticated obfuscation technique during the liblzma […] The post Understanding and Mitigating the Fedora Rawhide Vulnerability (CVE-2024-3094) appeared first on OX Security. The post Understanding and Mitigating the Fedora Rawhide Vulnerability (CVE-2024-3094) appeared first on Security Boulevard. View the full article
  14. CVE-2024-27198 Lead to Server Takeover Vulnerabilities The post How did CVE-2024-27198 Lead to Critical Vulnerability in JetBrains? appeared first on Kratikal Blogs. The post How did CVE-2024-27198 Lead to Critical Vulnerability in JetBrains? appeared first on Security Boulevard. View the full article
  15. The maintainers of curl, the popular command-line tool and library for transferring data with URLs, will release curl 8.4.0 on October 11, 2023. This version will include a fix for two common vulnerabilities and exposures (CVEs), one of which the curl maintainers rate as “HIGH” severity and described as “probably the worst curl security flaw in a long time.” The CVE IDs are: CVE-2023-38545: severity HIGH (affects both libcurl and the curl tool) CVE-2023-38546: severity LOW (affects libcurl only, not the tool) View the full article
  16. Each year, several thousand new vulnerabilities are disclosed. The CVE database alone enumerated more than 17000 new vulnerabilities during 2019. If you use third-party dependencies, you need to keep track of which dependencies you are using, and the vulnerabilities affecting them. View the full article
  • Forum Statistics

    63.7k
    Total Topics
    61.7k
    Total Posts
×
×
  • Create New...