Search the Community
Showing results for tags 'amazon quicksight'.
-
April has been packed with new releases! Last week continued that trend with many new releases supporting a variety of domains such as security, analytics, devops, and many more, as well as more exciting new capabilities within generative AI. If you missed the AWS Summit London 2024, you can now watch the sessions on demand, including the keynote by Tanuja Randery, VP & Marketing Director, EMEA, and many of the break-out sessions which will continue to be released over the coming weeks. Last week’s launches Here are some of the highlights that caught my attention this week: Manual and automatic rollback from any stage in AWS CodePipeline – You can now rollback any stage, other than Source, to any previously known good state in if you use a V2 pipeline in AWS CodePipeline. You can configure automatic rollback which will use the source changes from the most recent successful pipeline execution in the case of failure, or you can initiate a manual rollback for any stage from the console, API or SDK and choose which pipeline execution you want to use for the rollback. AWS CodeArtifact now supports RubyGems – Ruby community, rejoice, you can now store your gems in AWS CodeArtifact! You can integrate it with RubyGems.org, and CodeArtifact will automatically fetch any gems requested by the client and store them locally in your CodeArtifact repository. That means that you can have a centralized place for both your first-party and public gems so developers can access their dependencies from a single source. Create a repository in AWS CodeArtifact and choose “rubygems-store” to connect your repository to RubyGems.org on the “Public upstream repositories” dropdown. Amazon EventBridge Pipes now supports event delivery through AWS PrivateLink – You can now deliver events to an Amazon EventBridge Pipes target without traversing the public internet by using AWS PrivateLink. You can poll for events in a private subnet in your Amazon Virtual Private Cloud (VPC) without having to deploy any additional infrastructure to keep your traffic private. Amazon Bedrock launches continue. You can now run scalable, enterprise-grade generative AI workloads with Cohere Command R & R+. And Amazon Titan Text V2 is now optimized for improving Retrieval-Augmented Generation (RAG). AWS Trusted Advisor – last year we launched Trusted Advisor APIs enabling you to programmatically consume recommendations. A new API is available now that you can use to exclude resources from recommendations. Amazon EC2 – there have been two new great launches this week for EC2 users. You can now mark your AMIs as “protected” to avoid them being deregistered by accident. You can also now easily discover your active AMIs by simply describing them. Amazon CodeCatalyst – you can now view your git commit history in the CodeCatalyst console. General Availability Many new services and capabilities became generally available this week. Amazon Q in QuickSight – Amazon Q has brought generative BI to Amazon QuickSight giving you the ability to build beautiful dashboards automatically simply by using natural language and it’s now generally available. To get started, head to the Quicksight Pricing page to explore all options or start a 30-day free trial which allows up to 4 users per QuickSight account to use all the new generative AI features. With the new generative AI features enabled by Amazon Q in Amazon QuickSight you can use natural language queries to build, sort and filter dashboards. (source: AWS Documentation) Amazon Q Business (GA) and Amazon Q Apps (Preview) – Also generally available now is Amazon Q Business which we launched last year at AWS re:Invent 2023 with the ability to connect seamlessly with over 40 popular enterprise systems, including Microsoft 365, Salesforce, Amazon Simple Storage Service (Amazon S3), Gmail, and so many more. This allows Amazon Q Business to know about your business so your employees can generate content, solve problems, and take actions that are specific to your business. We have also launched support for custom plug-ins, so now you can create your own integrations with any third-party application. With general availability of Amazon Q Business we have also launched the ability to create your own custom plugins to connect to any third-party API. Another highlight of this release is the launch of Amazon Q Apps, which enables you to quickly generate an app from your conversation with Amazon Q Business, or by describing what you would like it to generate for you. All guardrails from Amazon Q Business apply, and it’s easy to share your apps with colleagues through an admin-managed library. Amazon Q Apps is in preview now. Check out Channy Yun’s post for a deeper dive into Amazon Q Business and Amazon Q Apps, which guides you through these new features. Amazon Q Developer – you can use Q Developer to completely change your developer flow. It has all the capabilities of what was previously known as Amazon CodeWhisperer, such as Q&A, diagnosing common errors, generating code including tests, and many more. Now it has expanded, so you can use it to generate SQL, and build data integration pipelines using natural language. In preview, it can describe resources in your AWS account and help you retrieve and analyze cost data from AWS Cost Explorer. For a full list of AWS announcements, be sure to keep an eye on the ‘What’s New with AWS?‘ page. Other AWS news Here are some additional projects, blog posts, and news items that you might find interesting: AWS open source news and updates – My colleague Ricardo writes about open source projects, tools, and events from the AWS Community. Discover Claude 3 – If you’re a developer looking for a good source to get started with Claude 3 them I recommend this great post from my colleague Haowen Huang: Mastering Amazon Bedrock with Claude 3: Developer’s Guide with Demos. Upcoming AWS events Check your calendars and sign up for upcoming AWS events: AWS Summits – Join free online and in-person events that bring the cloud computing community together to connect, collaborate, and learn about AWS. Register in your nearest city: Singapore (May 7), Seoul (May 16–17), Hong Kong (May 22), Milan (May 23), Stockholm (June 4), and Madrid (June 5). AWS re:Inforce – Explore 2.5 days of immersive cloud security learning in the age of generative AI at AWS re:Inforce, June 10–12 in Pennsylvania. AWS Community Days – Join community-led conferences that feature technical discussions, workshops, and hands-on labs led by expert AWS users and industry leaders from around the world: Turkey (May 18), Midwest | Columbus (June 13), Sri Lanka (June 27), Cameroon (July 13), Nigeria (August 24), and New York (August 28). GOTO EDA Day London – Join us in London on May 14 to learn about event-driven architectures (EDA) for building highly scalable, fault tolerant, and extensible applications. This conference is organized by GOTO, AWS, and partners. Browse all upcoming AWS led in-person and virtual events and developer-focused events. That’s all for this week. Check back next Monday for another Weekly Roundup! — Matheus Guimaraes This post is part of our Weekly Roundup series. Check back each week for a quick roundup of interesting news and announcements from AWS! View the full article
-
- amazon q
- amazon quicksight
-
(and 2 more)
Tagged with:
-
AWS PrivateLink now supports Amazon QuickSight, providing private connectivity between the QuickSight website, virtual private clouds (VPCs) or on-premises networks without exposing traffic to the public internet. With this integration, administrators can also use VPC endpoint policies to restrict access to QuickSight accounts that are not authorized on their network. View the full article
-
It always pays to know more about your customers, and AWS Data Exchange makes it straightforward to use publicly available census data to enrich your customer dataset. The United States Census Bureau conducts the US census every 10 years and gathers household survey data. This data is anonymized, aggregated, and made available for public use. The smallest geographic area for which the Census Bureau collects and aggregates data are census blocks, which are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps. If you know the census block in which a customer lives, you are able to make general inferences about their demographic characteristics. With these new attributes, you are able to build a segmentation model to identify distinct groups of customers that you can target with personalized messaging. This data is available to subscribe to on AWS Data Exchange—and with data sharing, you don’t need to pay to store a copy of it in your account in order to query it. In this post, we show how to use customer addresses to enrich a dataset with additional demographic details from the US Census Bureau dataset. Solution overview The solution includes the following high-level steps: Set up an Amazon Redshift Serverless endpoint and load customer data. Set up a place index in Amazon Location Service. Write an AWS Lambda user-defined function (UDF) to call Location Service from Amazon Redshift. Subscribe to census data on AWS Data Exchange. Use geospatial queries to tag addresses to census blocks. Create a new customer dataset in Amazon Redshift. Evaluate new customer data in Amazon QuickSight. The following diagram illustrates the solution architecture. Prerequisites You can use the following AWS CloudFormation template to deploy the required infrastructure. Before deployment, you need to sign up for QuickSight access through the AWS Management Console. Load generic address data to Amazon Redshift Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. Redshift Serverless makes it straightforward to run analytics workloads of any size without having to manage data warehouse infrastructure. To load our address data, we first create a Redshift Serverless workgroup. Then we use Amazon Redshift Query Editor v2 to load customer data from Amazon Simple Storage Service (Amazon S3). Create a Redshift Serverless workgroup There are two primary components of the Redshift Serverless architecture: Namespace – A collection of database objects and users. Namespaces group together all of the resources you use in Redshift Serverless, such as schemas, tables, users, datashares, and snapshots. Workgroup – A collection of compute resources. Workgroups have network and security settings that you can configure using the Redshift Serverless console, the AWS Command Line Interface (AWS CLI), or the Redshift Serverless APIs. To create your namespace and workgroup, refer to Creating a data warehouse with Amazon Redshift Serverless. For this exercise, name your workgroup sandbox and your namespace adx-demo. Use Query Editor v2 to load customer data from Amazon S3 You can use Query Editor v2 to submit queries and load data to your data warehouse through a web interface. To configure Query Editor v2 for your AWS account, refer to Data load made easy and secure in Amazon Redshift using Query Editor V2. After it’s configured, complete the following steps: Use the following SQL to create the customer_data schema within the dev database in your data warehouse: CREATE SCHEMA customer_data; Use the following SQL DDL to create your target table into which you’ll load your customer address data: CREATE TABLE customer_data.customer_addresses ( address character varying(256) ENCODE lzo, unitnumber character varying(256) ENCODE lzo, municipality character varying(256) ENCODE lzo, region character varying(256) ENCODE lzo, postalcode character varying(256) ENCODE lzo, country character varying(256) ENCODE lzo, customer_id integer ENCODE az64 ) DISTSTYLE AUTO; Load the address_list.csv file to the table you just created. For instructions, refer to Data load made easy and secure in Amazon Redshift using Query Editor V2. The file has no column headers and is pipe delimited (|). For information on how to load data from either Amazon S3 or your local desktop, refer to Loading data into a database. Use Location Service to geocode and enrich address data Location Service lets you add location data and functionality to applications, which includes capabilities such as maps, points of interest, geocoding, routing, geofences, and tracking. Our data is in Amazon Redshift, so we need to access the Location Service APIs using SQL statements. Each row of data contains an address that we want to enrich and geotag using the Location Service APIs. Amazon Redshift allows developers to create UDFs using a SQL SELECT clause, Python, or Lambda. Lambda is a compute service that lets you run code without provisioning or managing servers. With Lambda UDFs, you can write custom functions with complex logic and integrate with third-party components. Scalar Lambda UDFs return one result per invocation of the function—in this case, the Lambda function runs one time for each row of data it receives. For this post, we write a Lambda function that uses the Location Service API to geotag and validate our customer addresses. Then we register this Lambda function as a UDF with our Redshift instance, allowing us to call the function from a SQL command. For instructions to create a Location Service place index and create your Lambda function and scalar UDF, refer to Access Amazon Location Service from Amazon Redshift. For this post, we use ESRI as a provider and name the place index placeindex.redshift. Test your new function with the following code, which returns the coordinates of the White House in Washington, DC: select public.f_geocode_address('1600 Pennsylvania Ave.','Washington','DC','20500','USA'); Subscribe to demographic data from AWS Data Exchange AWS Data Exchange is a data marketplace with more than 3,500 products from over 300 providers delivered—through files, APIs, or Amazon Redshift queries—directly to the data lakes, applications, analytics, and machine learning models that use it. First, we need to give our Redshift namespace permission via AWS Identity and Access Management (IAM) to access subscriptions on AWS Data Exchange. Then we can subscribe to our sample demographic data. Complete the following steps: On the IAM console, add the AWSDataExchangeSubscriberFullAccess managed policy to your Amazon Redshift commands access role you assigned when creating the namespace. On the AWS Data Exchange console, navigate to the dataset ACS – Sociodemographics (USA, Census Block Groups, 2019), provided by CARTO. Choose Continue to subscribe, then choose Subscribe. The subscription may take a few minutes to configure. When your subscription is in place, navigate back to the Redshift Serverless console. In the navigation pane, choose Datashares. On the Subscriptions tab, choose the datashare that you just subscribed to. On the datashare details page, choose Create database from datashare. Choose the namespace you created earlier and provide a name for the new database that will hold the shared objects from the dataset you subscribed to. In Query Editor v2, you should see the new database you just created and two new tables: one that holds the block group polygons and another that holds the demographic information for each block group. Join geocoded customer data to census data with geospatial queries There are two primary types of spatial data: raster and vector data. Raster data is represented as a grid of pixels and is beyond the scope of this post. Vector data is comprised of vertices, edges, and polygons. With geospatial data, vertices are represented as latitude and longitude points and edges are the connections between pairs of vertices. Think of the road connecting two intersections on a map. A polygon is a set of vertices with a series of connecting edges that form a continuous shape. A simple rectangle is a polygon, just as the state border of Ohio can be represented as a polygon. The geography_usa_blockgroup_2019 dataset that you subscribed to has 220,134 rows, each representing a single census block group and its geographic shape. Amazon Redshift supports the storage and querying of vector-based spatial data with the GEOMETRY and GEOGRAPHY data types. You can use Redshift SQL functions to perform queries such as a point in polygon operation to determine if a given latitude/longitude point falls within the boundaries of a given polygon (such as state or county boundary). In this dataset, you can observe that the geom column in geography_usa_blockgroup_2019 is of type GEOMETRY. Our goal is to determine which census block (polygon) each of our geotagged addresses falls within so we can enrich our customer records with details that we know about the census block. Complete the following steps: Build a new table with the geocoding results from our UDF: CREATE TABLE customer_data.customer_addresses_geocoded AS select address ,unitnumber ,municipality ,region ,postalcode ,country ,customer_id ,public.f_geocode_address(address||' '||unitnumber,municipality,region,postalcode,country) as geocode_result FROM customer_data.customer_addresses; Use the following code to extract the different address fields and latitude/longitude coordinates from the JSON column and create a new table with the results: CREATE TABLE customer_data.customer_addresses_points AS SELECT customer_id ,geo_address address ,unitnumber ,municipality ,region ,postalcode ,country ,longitude ,latitude ,ST_SetSRID(ST_MakePoint(Longitude, Latitude),4326) as address_point --create new geom column of type POINT, set new point SRID = 4326 FROM ( select customer_id ,address ,unitnumber ,municipality ,region ,postalcode ,country ,cast(json_extract_path_text(geocode_result, 'Label', true) as VARCHAR) as geo_address ,cast(json_extract_path_text(geocode_result, 'Longitude', true) as float) as longitude ,cast(json_extract_path_text(geocode_result, 'Latitude', true) as float) as latitude --use json function to extract fields from geocode_result from customer_data.customer_addresses_geocoded) a; This code uses the ST_POINT function to create a new column from the latitude/longitude coordinates called address_point of type GEOMETRY and subtype POINT. It uses the ST_SetSRID geospatial function to set the spatial reference identifier (SRID) of the new column to 4326. The SRID defines the spatial reference system to be used when evaluating the geometry data. It’s important when joining or comparing geospatial data that they have matching SRIDs. You can check the SRID of an existing geometry column by using the ST_SRID function. For more information on SRIDs and GEOMETRY data types, refer to Querying spatial data in Amazon Redshift. Now that your customer addresses are geocoded as latitude/longitude points in a geometry column, you can use a join to identify which census block shape your new point falls within: CREATE TABLE customer_data.customer_addresses_with_census AS select c.* ,shapes.geoid as census_group_shape ,demo.* from customer_data.customer_addresses_points c inner join "carto_census_data"."carto".geography_usa_blockgroup_2019 shapes on ST_Contains(shapes.geom, c.address_point) --join tables where the address point falls within the census block geometry inner join carto_census_data.usa_acs.demographics_sociodemographics_usa_blockgroup_2019_yearly_2019 demo on demo.geoid = shapes.geoid; The preceding code creates a new table called customer_addresses_with_census, which joins the customer addresses to the census block in which they belong as well as the demographic data associated with that census block. To do this, you used the ST_CONTAINS function, which accepts two geometry data types as an input and returns TRUE if the 2D projection of the first input geometry contains the second input geometry. In our case, we have census blocks represented as polygons and addresses represented as points. The join in the SQL statement succeeds when the point falls within the boundaries of the polygon. Visualize the new demographic data with QuickSight QuickSight is a cloud-scale business intelligence (BI) service that you can use to deliver easy-to-understand insights to the people who you work with, wherever they are. QuickSight connects to your data in the cloud and combines data from many different sources. First, let’s build some new calculated fields that will help us better understand the demographics of our customer base. We can do this in QuickSight, or we can use SQL to build the columns in a Redshift view. The following is the code for a Redshift view: CREATE VIEW customer_data.customer_features AS ( SELECT customer_id ,postalcode ,region ,municipality ,geoid as census_geoid ,longitude ,latitude ,total_pop ,median_age ,white_pop/total_pop as perc_white ,black_pop/total_pop as perc_black ,asian_pop/total_pop as perc_asian ,hispanic_pop/total_pop as perc_hispanic ,amerindian_pop/total_pop as perc_amerindian ,median_income ,income_per_capita ,median_rent ,percent_income_spent_on_rent ,unemployed_pop/coalesce(pop_in_labor_force) as perc_unemployment ,(associates_degree + bachelors_degree + masters_degree + doctorate_degree)/total_pop as perc_college_ed ,(household_language_total - household_language_english)/coalesce(household_language_total) as perc_other_than_english FROM "dev"."customer_data"."customer_addresses_with_census" t ); To get QuickSight to talk to our Redshift Serverless endpoint, complete the following steps: Manually authorize connections from QuickSight to Redshift clusters. For instructions, refer to Authorizing connections from Amazon QuickSight to Amazon Redshift clusters (stop after Step 19). Configure the VPC connection between QuickSight and the Redshift Serverless endpoint. Now you can create a new dataset in QuickSight. On the QuickSight console, choose Datasets in the navigation pane. Choose New dataset. We want to create a dataset from a new data source and use the Redshift: Manual connect option. Provide the connection information for your Redshift Serverless workgroup. You will need the endpoint for our workgroup and the user name and password that you created when you set up your workgroup. You can find your workgroup’s endpoint on the Redshift Serverless console by navigating to your workgroup configuration. The following screenshot is an example of the connection settings needed. Notice the connection type is the name of the VPC connection that you previously configured in QuickSight. When you copy the endpoint from the Redshift console, be sure to remove the database and port number from the end of the URL before entering it in the field. Save the new data source configuration. You’ll be prompted to choose the table you want to use for your dataset. Choose the new view that you created that has your new derived fields. Select Directly query your data. This will connect your visualizations directly to the data in the database rather than ingesting data into the QuickSight in-memory data store. To create a histogram of median income level, choose the blank visual on Sheet1 and then choose the histogram visual icon under Visual types. Choose median_income under Fields list and drag it to the Value field well. This builds a histogram showing the distribution of median_income for our customers based on the census block group in which they live. Conclusion In this post, we demonstrated how companies can use open census data available on AWS Data Exchange to effortlessly gain a high-level understanding of their customer base from a demographic standpoint. This basic understanding of customers based on where they live can serve as the foundation for more targeted marketing campaigns and even influence product development and service offerings. As always, AWS welcomes your feedback. Please leave your thoughts and questions in the comments section. About the Author Tony Stricker is a Principal Technologist on the Data Strategy team at AWS, where he helps senior executives adopt a data-driven mindset and align their people/process/technology in ways that foster innovation and drive towards specific, tangible business outcomes. He has a background as a data warehouse architect and data scientist and has delivered solutions in to production across multiple industries including oil and gas, financial services, public sector, and manufacturing. In his spare time, Tony likes to hang out with his dog and cat, work on home improvement projects, and restore vintage Airstream campers. View the full article
-
- geospatial
- amazon redshift
-
(and 2 more)
Tagged with:
-
Today, I’m happy to share that Amazon Q in QuickSight is available for preview. Now you can experience the Generative BI capabilities in Amazon QuickSight announced on July 26, as well as two additional capabilities for business users. Turning insights into impact faster with Amazon Q in QuickSight With this announcement, business users can now generate compelling sharable stories examining their data, see executive summaries of dashboards surfacing key insights from data in seconds, and confidently answer questions of data not answered by dashboards and reports with a reimagined Q&A experience. Before we go deeper into each capability, here’s a quick summary: Stories — This is a new and visually compelling way to present and share insights. Stories can automatically generated in minutes using natural language prompts, customized using point-and-click options, and shared securely with others. Executive summaries — With this new capability, Amazon Q helps you to understand key highlights in your dashboard. Data Q&A — This capability provides a new and easy-to-use natural-language Q&A experience to help you get answers for questions beyond what is available in existing dashboards and reports. To get started, you need to enable Preview Q Generative Capabilities in Preview manager. Once enabled, you’re ready to experience what Amazon Q in QuickSight brings for business users and business analysts building dashboards. Stories automatically builds formatted narratives Business users often need to share their findings of data with others to inform team decisions; this has historically involved taking data out of the business intelligence (BI) system. Stories are a new feature enabling business users to create beautifully formatted narratives that describe data, and include visuals, images, and text in document or slide format directly that can easily be shared with others within QuickSight. Now, business users can use natural language to ask Amazon Q to build a story about their data by starting from the Amazon Q Build menu on an Amazon QuickSight dashboard. Amazon Q extracts data insights and statistics from selected visuals, then uses large language models (LLMs) to build a story in multiple parts, examining what the data may mean to the business and suggesting ideas to achieve specific goals. For example, a sales manager can ask, “Build me a story about overall sales performance trends. Break down data by product and region. Suggest some strategies for improving sales.” Or, “Write a marketing strategy that uses regional sales trends to uncover opportunities that increase revenue.” Amazon Q will build a story exploring specific data insights, including strategies to grow sales. Once built, business users get point-and-click tools augmented with artificial intelligence- (AI) driven rewriting capabilities to customize stories using a rich text editor to refine the message, add ideas, and highlight important details. Stories can also be easily and securely shared with other QuickSight users by email. Executive summaries deliver a quick snapshot of important information Executive summaries are now available with a single click using the Amazon Q Build menu in Amazon QuickSight. Amazon QuickSight automatically determines interesting facts and statistics, then use LLMs to write about interesting trends. This new capability saves time in examining detailed dashboards by providing an at-a-glance view of key insights described using natural language. The executive summaries feature provides two advantages. First, it helps business users generate all the key insights without the need to browse through tens of visuals on the dashboard and understand changes from each. Secondly, it enables readers to find key insights based on information in the context of dashboards and reports with minimum effort. New data Q&A experience Once an interesting insight is discovered, business users frequently need to dig in to understand data more deeply than they can from existing dashboards and reports. Natural language query (NLQ) solutions designed to solve this problem frequently expect that users already know what fields may exist or how they should be combined to answer business questions. However, business users aren’t always experts in underlying data schemas, and their questions frequently come in more general terms, like “How were sales last week in NY?” Or, “What’s our top campaign?” The new Q&A experience accessed within the dashboards and reports helps business users confidently answer questions about data. It includes AI-suggested questions and a profile of what data can be asked about and automatically generated multi-visual answers with narrative summaries explaining data context. Furthermore, Amazon Q brings the ability to answer vague questions and offer alternatives for specific data. For example, customers can ask a vague question, such as “Top products,” and Amazon Q will provide an answer that breaks down products by sales and offers alternatives for products by customer count and products by profit. Amazon Q explains answer context in a narrative summarizing total sales, number of products, and picking out the sales for the top product. Customers can search for specific data values and even a single word such as, for example, the product name “contactmatcher.” Amazon Q returns a complete set of data related to that product and provides a natural language breakdown explaining important insights like total units sold. Specific visuals from the answers can also be added to a pinboard for easy future access. Watch the demo To see these new capabilities in action, have a look at the demo. Things to Know Here are a few additional things that you need to know: The Amazon Q Build menu options for Executive Summaries and Stories need to be enabled in each dashboard when publishing. To learn how Amazon Q in QuickSight enables business analysts to build dashboards to apply an extended list of visual refinement options, read: Generative BI dashboard authoring capabilities now available in preview for Amazon QuickSight Q customers. Join the preview Amazon Q in QuickSight product page Read more about Amazon Q Introducing Amazon Q, a new generative AI-powered assistant (preview) Amazon Q brings generative AI-powered assistance to IT pros and developers (preview) Improve developer productivity with generative-AI powered Amazon Q in Amazon CodeCatalyst (preview) Upgrade your Java applications with Amazon Q Code Transformation (preview) New generative AI features in Amazon Connect, including Amazon Q, facilitate improved contact center service — Donnie View the full article
-
Forum Statistics
70.4k
Total Topics68.3k
Total Posts